3.952 \(\int \frac{1}{(c x)^{3/2} \sqrt [4]{a+b x^2}} \, dx\)

Optimal. Leaf size=90 \[ \frac{2 \sqrt{b} \sqrt{c x} \sqrt [4]{\frac{a}{b x^2}+1} E\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )\right |2\right )}{\sqrt{a} c^2 \sqrt [4]{a+b x^2}}-\frac{2}{c \sqrt{c x} \sqrt [4]{a+b x^2}} \]

[Out]

-2/(c*Sqrt[c*x]*(a + b*x^2)^(1/4)) + (2*Sqrt[b]*(1 + a/(b*x^2))^(1/4)*Sqrt[c*x]*EllipticE[ArcCot[(Sqrt[b]*x)/S
qrt[a]]/2, 2])/(Sqrt[a]*c^2*(a + b*x^2)^(1/4))

________________________________________________________________________________________

Rubi [A]  time = 0.0345417, antiderivative size = 90, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {316, 284, 335, 196} \[ \frac{2 \sqrt{b} \sqrt{c x} \sqrt [4]{\frac{a}{b x^2}+1} E\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )\right |2\right )}{\sqrt{a} c^2 \sqrt [4]{a+b x^2}}-\frac{2}{c \sqrt{c x} \sqrt [4]{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((c*x)^(3/2)*(a + b*x^2)^(1/4)),x]

[Out]

-2/(c*Sqrt[c*x]*(a + b*x^2)^(1/4)) + (2*Sqrt[b]*(1 + a/(b*x^2))^(1/4)*Sqrt[c*x]*EllipticE[ArcCot[(Sqrt[b]*x)/S
qrt[a]]/2, 2])/(Sqrt[a]*c^2*(a + b*x^2)^(1/4))

Rule 316

Int[1/(((c_.)*(x_))^(3/2)*((a_) + (b_.)*(x_)^2)^(1/4)), x_Symbol] :> Simp[-2/(c*Sqrt[c*x]*(a + b*x^2)^(1/4)),
x] - Dist[b/c^2, Int[Sqrt[c*x]/(a + b*x^2)^(5/4), x], x] /; FreeQ[{a, b, c}, x] && PosQ[b/a]

Rule 284

Int[Sqrt[(c_.)*(x_)]/((a_) + (b_.)*(x_)^2)^(5/4), x_Symbol] :> Dist[(Sqrt[c*x]*(1 + a/(b*x^2))^(1/4))/(b*(a +
b*x^2)^(1/4)), Int[1/(x^2*(1 + a/(b*x^2))^(5/4)), x], x] /; FreeQ[{a, b, c}, x] && PosQ[b/a]

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 196

Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2*EllipticE[(1*ArcTan[Rt[b/a, 2]*x])/2, 2])/(a^(5/4)*Rt[b
/a, 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{1}{(c x)^{3/2} \sqrt [4]{a+b x^2}} \, dx &=-\frac{2}{c \sqrt{c x} \sqrt [4]{a+b x^2}}-\frac{b \int \frac{\sqrt{c x}}{\left (a+b x^2\right )^{5/4}} \, dx}{c^2}\\ &=-\frac{2}{c \sqrt{c x} \sqrt [4]{a+b x^2}}-\frac{\left (\sqrt [4]{1+\frac{a}{b x^2}} \sqrt{c x}\right ) \int \frac{1}{\left (1+\frac{a}{b x^2}\right )^{5/4} x^2} \, dx}{c^2 \sqrt [4]{a+b x^2}}\\ &=-\frac{2}{c \sqrt{c x} \sqrt [4]{a+b x^2}}+\frac{\left (\sqrt [4]{1+\frac{a}{b x^2}} \sqrt{c x}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+\frac{a x^2}{b}\right )^{5/4}} \, dx,x,\frac{1}{x}\right )}{c^2 \sqrt [4]{a+b x^2}}\\ &=-\frac{2}{c \sqrt{c x} \sqrt [4]{a+b x^2}}+\frac{2 \sqrt{b} \sqrt [4]{1+\frac{a}{b x^2}} \sqrt{c x} E\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )\right |2\right )}{\sqrt{a} c^2 \sqrt [4]{a+b x^2}}\\ \end{align*}

Mathematica [C]  time = 0.011586, size = 54, normalized size = 0.6 \[ -\frac{2 x \sqrt [4]{\frac{b x^2}{a}+1} \, _2F_1\left (-\frac{1}{4},\frac{1}{4};\frac{3}{4};-\frac{b x^2}{a}\right )}{(c x)^{3/2} \sqrt [4]{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((c*x)^(3/2)*(a + b*x^2)^(1/4)),x]

[Out]

(-2*x*(1 + (b*x^2)/a)^(1/4)*Hypergeometric2F1[-1/4, 1/4, 3/4, -((b*x^2)/a)])/((c*x)^(3/2)*(a + b*x^2)^(1/4))

________________________________________________________________________________________

Maple [F]  time = 0.033, size = 0, normalized size = 0. \begin{align*} \int{ \left ( cx \right ) ^{-{\frac{3}{2}}}{\frac{1}{\sqrt [4]{b{x}^{2}+a}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x)^(3/2)/(b*x^2+a)^(1/4),x)

[Out]

int(1/(c*x)^(3/2)/(b*x^2+a)^(1/4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{2} + a\right )}^{\frac{1}{4}} \left (c x\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(3/2)/(b*x^2+a)^(1/4),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)^(1/4)*(c*x)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b x^{2} + a\right )}^{\frac{3}{4}} \sqrt{c x}}{b c^{2} x^{4} + a c^{2} x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(3/2)/(b*x^2+a)^(1/4),x, algorithm="fricas")

[Out]

integral((b*x^2 + a)^(3/4)*sqrt(c*x)/(b*c^2*x^4 + a*c^2*x^2), x)

________________________________________________________________________________________

Sympy [C]  time = 3.99342, size = 31, normalized size = 0.34 \begin{align*} - \frac{{{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{1}{2} \\ \frac{3}{2} \end{matrix}\middle |{\frac{a e^{i \pi }}{b x^{2}}} \right )}}{\sqrt [4]{b} c^{\frac{3}{2}} x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)**(3/2)/(b*x**2+a)**(1/4),x)

[Out]

-hyper((1/4, 1/2), (3/2,), a*exp_polar(I*pi)/(b*x**2))/(b**(1/4)*c**(3/2)*x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{2} + a\right )}^{\frac{1}{4}} \left (c x\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(3/2)/(b*x^2+a)^(1/4),x, algorithm="giac")

[Out]

integrate(1/((b*x^2 + a)^(1/4)*(c*x)^(3/2)), x)